{-# OPTIONS --without-K --safe #-}
open import Level
module Categories.Category.Instance.EmptySet where
open import Data.Unit
open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category.Instance.Sets
open import Categories.Category.Instance.Setoids
import Categories.Object.Initial as Init
module _ {o : Level} where
open Init (Sets o)
EmptySet-⊥ : Initial
EmptySet-⊥ = record { ⊥ = Lift o ⊥ ; ⊥-is-initial = record { ! = λ { {A} (lift x) → ⊥-elim x } ; !-unique = λ { f {()} } } }
module _ {c ℓ : Level} where
open Init (Setoids c ℓ)
EmptySetoid : Setoid c ℓ
EmptySetoid = record
{ Carrier = Lift c ⊥
; _≈_ = λ _ _ → Lift ℓ ⊤
}
EmptySetoid-⊥ : Initial
EmptySetoid-⊥ = record
{ ⊥ = EmptySetoid
; ⊥-is-initial = record
{ ! = record
{ to = λ { () }
; cong = λ { {()} }
}
; !-unique = λ { _ {()} }
}
}