The Category of Elgot
Algebras
module Category.Construction.ElgotAlgebras {o ℓ e} {C : Category o ℓ e} (cocartesian : Cocartesian C) where
open Category C
open MR C
open HomReasoning
open Equiv
open Cocartesian cocartesian
open import Algebra.Elgot cocartesian
module _ (E₁ E₂ : Elgot-Algebra) where
open Elgot-Algebra E₁ renaming (_# to _#₁)
open Elgot-Algebra E₂ renaming (_# to _#₂; A to B)
record Elgot-Algebra-Morphism : Set (o ⊔ ℓ ⊔ e) where
field
h : A ⇒ B
preserves : ∀ {X} {f : X ⇒ A + X} → h ∘ (f #₁) ≈ ((h +₁ id) ∘ f)#₂
Elgot-Algebras : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) e
Elgot-Algebras = record
{ Obj = Elgot-Algebra
; _⇒_ = Elgot-Algebra-Morphism
; _≈_ = λ f g → Elgot-Algebra-Morphism.h f ≈ Elgot-Algebra-Morphism.h g
; id = λ {EB} → let open Elgot-Algebra EB in
record { h = id; preserves = λ {X : Obj} {f : X ⇒ A + X} → begin
id ∘ f # ≈⟨ identityˡ ⟩
f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym)) ⟩
((id +₁ id) ∘ f) # ∎ }
; _∘_ = λ {EA} {EB} {EC} f g → let
open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ)
open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ ∘ hᵍ; preserves = λ {X} {f : X ⇒ A + X} → begin
(hᶠ ∘ hᵍ) ∘ (f #ᵃ) ≈⟨ pullʳ preservesᵍ ⟩
(hᶠ ∘ (((hᵍ +₁ id) ∘ f) #ᵇ)) ≈⟨ preservesᶠ ⟩
(((hᶠ +₁ id) ∘ (hᵍ +₁ id) ∘ f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²)))) ⟩
((hᶠ ∘ hᵍ +₁ id) ∘ f) #ᶜ ∎ }
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; assoc = assoc
; sym-assoc = sym-assoc
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
where open Elgot-Algebra-Morphism