An equational lifting monad is a commutative monad satisfying one additional equational law
module Monad.EquationalLifting {o ℓ e} {C : Category o ℓ e} (cartesian : Cartesian C) where open Category C open Cartesian cartesian using (products) open BinaryProducts products open CartesianMonoidal cartesian using (monoidal) open Symmetric (symmetric C cartesian) using (braided) IsEquationalLiftingMonad : ∀ (CM : CommutativeMonad braided) → Set (o ⊔ e) IsEquationalLiftingMonad CM = ∀ {X} → τ.η _ ∘ Δ {M.F.₀ X} ≈ M.F.₁ ⟨ M.η.η X , id ⟩ where open CommutativeMonad CM module τ = strengthen