{-# OPTIONS --without-K --safe #-}

open import Categories.Category using (Category; module Commutation)

module Categories.Monad.Strong.Properties {o  e} {C : Category o  e} where

open import Level
open import Data.Product using (_,_; _×_)

import Categories.Category.Construction.Core as Core
open import Categories.Category.Product
open import Categories.Functor renaming (id to idF)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Braided using (Braided)
open import Categories.Category.Monoidal.Construction.Reverse
  using (Reverse-Monoidal; Reverse-Braided)
import Categories.Category.Monoidal.Braided.Properties as BraidedProps
import Categories.Category.Monoidal.Reasoning as MonoidalReasoning
import Categories.Category.Monoidal.Utilities as MonoidalUtils
open import Categories.Monad using (Monad)
open import Categories.Monad.Strong using (Strength; RightStrength; StrongMonad; RightStrongMonad)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)

-- A left strength is a right strength in the reversed category.

rightInReversed : {V : Monoidal C} {M : Monad C} 
                  Strength V M  RightStrength (Reverse-Monoidal V) M
rightInReversed left = record
  { strengthen     = ntHelper (record
    { η            = λ{ (X , Y)  strengthen.η (Y , X)       }
    ; commute      = λ{ (f , g)  strengthen.commute (g , f) }
    })
  ; identityˡ      = identityˡ
  ; η-comm         = η-comm
  ; μ-η-comm       = μ-η-comm
  ; strength-assoc = strength-assoc
  }
  where open Strength left

-- A right strength is a left strength in the reversed category.

leftInReversed : {V : Monoidal C} {M : Monad C} 
                 RightStrength V M  Strength (Reverse-Monoidal V) M
leftInReversed right = record
  { strengthen     = ntHelper (record
    { η            = λ{ (X , Y)  strengthen.η (Y , X)       }
    ; commute      = λ{ (f , g)  strengthen.commute (g , f) }
    })
  ; identityˡ      = identityˡ
  ; η-comm         = η-comm
  ; μ-η-comm       = μ-η-comm
  ; strength-assoc = strength-assoc
  }
  where open RightStrength right

open Category C hiding (identityˡ)
open MR C
open Commutation C

module Left {V : Monoidal C} {M : Monad C} (left : Strength V M) where
  open Category C using (identityˡ)
  open Monoidal V using (_⊗₀_)
  open MonoidalUtils V using (_⊗ᵢ_)
  open Core.Shorthands C             -- for idᵢ, _∘ᵢ_, ...
  open MonoidalUtils.Shorthands V    -- for λ⇒, ρ⇒, α⇒, ...
  open MonoidalReasoning V
  open Monad M using (F; μ; η)

  private
    module left = Strength left
    variable
      X Y Z W : Obj

  module Shorthands where
    module σ = left.strengthen

    σ :  {X Y}  X ⊗₀ F.₀ Y  F.₀ (X ⊗₀ Y)
    σ {X} {Y} = σ.η (X , Y)

  open Shorthands

  -- In a braided monoidal category, a left strength induces a right strength.

  module _ (BV : Braided V) where
    open Braided BV hiding (_⊗₀_)
    open BraidedProps BV using (braiding-coherence; inv-braiding-coherence; assoc-reverse)
    open BraidedProps.Shorthands BV renaming (σ to B; σ⇒ to B⇒; σ⇐ to B⇐)

    private
      τ :  {X Y}  F.₀ X ⊗₀ Y  F.₀ (X ⊗₀ Y)
      τ {X} {Y} = F.₁ B⇐  σ  B⇒

      τ-commute : (f : X  Z) (g : Y  W)  τ  (F.₁ f ⊗₁ g)  F.₁ (f ⊗₁ g)  τ
      τ-commute f g = begin
        (F.₁ B⇐  σ  B⇒)  (F.₁ f ⊗₁ g)   ≈⟨ pullʳ (pullʳ (braiding.⇒.commute (F.₁ f , g))) 
        F.₁ B⇐  σ  ((g ⊗₁ F.₁ f)  B⇒)   ≈⟨ refl⟩∘⟨ pullˡ (σ.commute (g , f)) 
        F.₁ B⇐  (F.₁ (g ⊗₁ f)  σ)  B⇒   ≈˘⟨ pushˡ (pushˡ (F.homomorphism)) 
        (F.₁ (B⇐  (g ⊗₁ f))  σ)  B⇒     ≈⟨ pushˡ (F.F-resp-≈ (braiding.⇐.commute (f , g)) ⟩∘⟨refl) 
        F.₁ ((f ⊗₁ g)  B⇐)  σ  B⇒       ≈⟨ pushˡ F.homomorphism 
        F.₁ (f ⊗₁ g)  F.₁ B⇐  σ  B⇒     

    right-strengthen : NaturalTransformation ( ∘F (F  idF)) (F ∘F )
    right-strengthen = ntHelper (record
      { η = λ _  τ
      ; commute = λ (f , g)  τ-commute f g
      })

    private module τ = NaturalTransformation right-strengthen

    -- The strengths commute with braiding.

    left-right-braiding-comm :  {X Y}  F.₁ B⇐  σ {X} {Y}  τ  B⇐
    left-right-braiding-comm = begin
      F.₁ B⇐  σ               ≈˘⟨ pullʳ (cancelʳ (braiding.iso.isoʳ _)) 
      (F.₁ B⇐  σ  B⇒)  B⇐   

    right-left-braiding-comm :  {X Y}  F.₁ B⇒  τ {X} {Y}  σ  B⇒
    right-left-braiding-comm = begin
      F.₁ B⇒  (F.₁ B⇐  σ  B⇒)   ≈˘⟨ pushˡ F.homomorphism 
      F.₁ (B⇒  B⇐)  σ  B⇒       ≈⟨ F.F-resp-≈ (braiding.iso.isoʳ _) ⟩∘⟨refl 
      F.₁ id  σ  B⇒              ≈⟨ elimˡ F.identity 
      σ  B⇒                       

    right-identityˡ :  {X}  F.₁ ρ⇒  τ {X} {unit}  ρ⇒
    right-identityˡ = begin
      F.₁ ρ⇒  F.₁ B⇐  σ  B⇒  ≈⟨ pullˡ ( F.homomorphism) 
      F.₁ (ρ⇒  B⇐)  σ  B⇒    ≈⟨ F.F-resp-≈ (inv-braiding-coherence) ⟩∘⟨refl 
      F.₁ λ⇒  σ  B⇒           ≈⟨ pullˡ left.identityˡ 
      λ⇒  B⇒                   ≈⟨ braiding-coherence 
      ρ⇒                        

    -- The induced right strength commutes with the monad unit.

    right-η-comm :  {X Y}  τ  η.η X ⊗₁ id  η.η (X ⊗₀ Y)
    right-η-comm {X} {Y} = begin
      (F.₁ B⇐  σ  B⇒)  (η.η X ⊗₁ id)  ≈⟨ pullʳ (pullʳ (braiding.⇒.commute (η.η X , id))) 
      F.₁ B⇐  σ  (id ⊗₁ η.η X)  B⇒  ≈⟨ refl⟩∘⟨ pullˡ left.η-comm 
      F.₁ B⇐  η.η (Y ⊗₀ X)  B⇒       ≈⟨ pullˡ ( (η.commute B⇐)) 
      (η.η (X ⊗₀ Y)  B⇐)  B⇒         ≈⟨ cancelʳ (braiding.iso.isoˡ _) 
      η.η (X ⊗₀ Y)                     

    -- The induced right strength commutes with the monad multiplication.

    right-μ-η-comm :  {X Y}  μ.η (X ⊗₀ Y)  F.₁ τ  τ  τ  μ.η X ⊗₁ id
    right-μ-η-comm {X} {Y} = begin
      μ.η (X ⊗₀ Y)  F.₁ τ  F.₁ B⇐  σ  B⇒           ≈⟨ refl⟩∘⟨ pullˡ ( F.homomorphism) 
      μ.η (X ⊗₀ Y)  F.₁ (τ  B⇐)  σ  B⇒             ≈⟨ refl⟩∘⟨ (F.F-resp-≈ (pullʳ (cancelʳ (braiding.iso.isoʳ _))) ⟩∘⟨refl) 
      μ.η (X ⊗₀ Y)  F.₁ (F.₁ B⇐  σ)  σ  B⇒         ≈⟨ refl⟩∘⟨ F.homomorphism ⟩∘⟨refl 
      μ.η (X ⊗₀ Y)  (F.₁ (F.₁ B⇐)  F.₁ σ)  σ  B⇒   ≈⟨ pullˡ (pullˡ (μ.commute B⇐)) 
      ((F.₁ B⇐  μ.η (Y ⊗₀ X))  F.₁ σ)  σ  B⇒       ≈⟨ assoc²  (refl⟩∘⟨  assoc²') 
      F.₁ B⇐  (μ.η (Y ⊗₀ X)  F.₁ σ  σ)  B⇒         ≈⟨ refl⟩∘⟨ pushˡ left.μ-η-comm 
      F.₁ B⇐  σ  (id ⊗₁ μ.η X)  B⇒                  ≈˘⟨ pullʳ (pullʳ (braiding.⇒.commute (μ.η X , id))) 
      τ  μ.η X ⊗₁ id 

    -- The induced right strength commutes with the associator

    right-strength-assoc : [ F.₀ X ⊗₀ (Y ⊗₀ Z)    F.₀ ((X ⊗₀ Y) ⊗₀ Z) ]⟨
                             τ                  ⇒⟨ F.₀ (X ⊗₀ (Y ⊗₀ Z)) 
                             F.₁ α⇐
                            α⇐                 ⇒⟨ (F.₀ X ⊗₀ Y) ⊗₀ Z 
                             τ ⊗₁ id            ⇒⟨ F.₀ (X ⊗₀ Y) ⊗₀ Z 
                             τ
                           
    right-strength-assoc = begin
        F.₁ α⇐  τ
      ≈˘⟨ F.F-resp-≈ assoc-reverse ⟩∘⟨refl 
        F.₁ (B⇐  id ⊗₁ B⇐  α⇒  B⇒  id ⊗₁ B⇒)  τ
      ≈⟨ pushˡ F.homomorphism 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐  α⇒  B⇒  id ⊗₁ B⇒)  τ
      ≈⟨ refl⟩∘⟨ pushˡ F.homomorphism 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  F.₁ (α⇒  B⇒  id ⊗₁ B⇒)  τ
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ F.homomorphism 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  F.₁ α⇒  F.₁ (B⇒  id ⊗₁ B⇒)  τ
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ F.homomorphism 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  F.₁ α⇒  F.₁ B⇒  F.₁ (id ⊗₁ B⇒)  τ
      ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ τ.commute (id , B⇒) 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  F.₁ α⇒  F.₁ B⇒  τ  F.₁ id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ right-left-braiding-comm 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  F.₁ α⇒  σ  B⇒  F.₁ id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ left.strength-assoc 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  σ  (id ⊗₁ σ  α⇒)  B⇒  F.₁ id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pullʳ (refl⟩∘⟨ refl⟩∘⟨ F.identity ⟩⊗⟨refl) 
        F.₁ B⇐  F.₁ (id ⊗₁ B⇐)  σ  id ⊗₁ σ  α⇒  B⇒  id ⊗₁ B⇒
      ≈˘⟨ refl⟩∘⟨ extendʳ (σ.commute (id , B⇐)) 
        F.₁ B⇐  σ  id ⊗₁ F.₁ B⇐  id ⊗₁ σ  α⇒  B⇒  id ⊗₁ B⇒
      ≈⟨ extendʳ left-right-braiding-comm 
        τ  B⇐  id ⊗₁ F.₁ B⇐  id ⊗₁ σ  α⇒  B⇒  id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ (parallel Equiv.refl left-right-braiding-comm) 
        τ  B⇐  id ⊗₁ τ  id ⊗₁ B⇐  α⇒  B⇒  id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ extendʳ (braiding.⇐.commute (τ , id)) 
        τ  τ ⊗₁ id  B⇐  id ⊗₁ B⇐  α⇒  B⇒  id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ Equiv.refl ⟩∘⟨ (refl⟩⊗⟨ Equiv.refl) ⟩∘⟨refl 
        τ  τ ⊗₁ id  B⇐  id ⊗₁ B⇐  α⇒  B⇒  id ⊗₁ B⇒
      ≈⟨ refl⟩∘⟨ refl⟩∘⟨ assoc-reverse 
        τ  τ ⊗₁ id  α⇐
      

    -- The induced right strength

    right : RightStrength V M
    right = record
      { strengthen     = right-strengthen
      ; identityˡ      = right-identityˡ
      ; η-comm         = right-η-comm
      ; μ-η-comm       = right-μ-η-comm
      ; strength-assoc = right-strength-assoc
      }

Strength⇒RightStrength : {V : Monoidal C} {M : Monad C} 
                         Braided V  Strength V M  RightStrength V M
Strength⇒RightStrength BV left = Left.right left BV

StrongMonad⇒RightStrongMonad : {V : Monoidal C} 
                               Braided V  StrongMonad V  RightStrongMonad V
StrongMonad⇒RightStrongMonad BV SM = record
  { M             = M
  ; rightStrength = Strength⇒RightStrength BV strength
  }
  where open StrongMonad SM

module Right {V : Monoidal C} {M : Monad C} (right : RightStrength V M) where
  open Monoidal V using (_⊗₀_)
  open Monad M using (F)

  module Shorthands where
    module τ = RightStrength.strengthen right

    τ :  {X Y}  F.₀ X ⊗₀ Y  F.₀ (X ⊗₀ Y)
    τ {X} {Y} = τ.η (X , Y)

-- In a braided monoidal category, a right strength induces a left strength.

RightStrength⇒Strength : {V : Monoidal C} {M : Monad C} 
                         Braided V  RightStrength V M  Strength V M
RightStrength⇒Strength {V} {M} BV right = record
  { strengthen     = strengthen
  ; identityˡ      = identityˡ
  ; η-comm         = η-comm
  ; μ-η-comm       = μ-η-comm
  ; strength-assoc = strength-assoc
  }
  where
    left₁ : Strength (Reverse-Monoidal V) M
    left₁ = leftInReversed right

    right₂ : RightStrength (Reverse-Monoidal V) M
    right₂ = Strength⇒RightStrength (Reverse-Braided BV) left₁

    -- Note: this is almost what we need, but Reverse-Monoidal is
    -- not a strict involution (some of the coherence laws are
    -- have proofs that are not strictly identical to their
    -- original counterparts). But this does not matter
    -- structurally, so we can just re-package the components we
    -- need.
    left₂ : Strength (Reverse-Monoidal (Reverse-Monoidal V)) M
    left₂ = leftInReversed right₂

    open Strength left₂

RightStrongMonad⇒StrongMonad : {V : Monoidal C} 
                               Braided V  RightStrongMonad V  StrongMonad V
RightStrongMonad⇒StrongMonad BV RSM = record
  { M        = M
  ; strength = RightStrength⇒Strength BV rightStrength
  }
  where open RightStrongMonad RSM