The
Category of Elgot Algebras on C is Cartesian if C is Cartesian
module Category.Construction.ElgotAlgebras.Products {o ℓ e} {C : Category o ℓ e} (cocartesian : Cocartesian C) (cartesian : Cartesian C) where
open Category C
open Equiv
open HomReasoning
open MR C
open import Category.Construction.ElgotAlgebras cocartesian
open Cartesian cartesian
open Cocartesian cocartesian
open import Algebra.Elgot cocartesian
open BinaryProducts products renaming (unique to ⟨⟩-unique; unique′ to ⟨⟩-unique′)
Terminal-Elgot-Algebras : Terminal Elgot-Algebras
Terminal-Elgot-Algebras = record
{ ⊤ = record
{ A = ⊤
; algebra = record
{ _# = λ x → !
; #-Fixpoint = λ {_ f} → !-unique ([ id , ! ] ∘ f)
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
; #-Folding = refl
; #-resp-≈ = λ _ → refl
}
}
; ⊤-is-terminal = record
{ ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) }
; !-unique = λ {A} f → !-unique (Elgot-Algebra-Morphism.h f)
}
}
where
open Terminal terminal
Product-Elgot-Algebra : ∀ {EA EB : Elgot-Algebra} → Elgot-Algebra
Product-Elgot-Algebra {EA} {EB} = record
{ A = A × B
; algebra = record
{ _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ id) ∘ h)#ᵃ , ((π₂ +₁ id) ∘ h)#ᵇ ⟩
; #-Fixpoint = λ {X} {f} → begin
⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
⟨ [ id , ((π₁ +₁ id) ∘ f)#ᵃ ] ∘ ((π₁ +₁ id) ∘ f) , [ id , ((π₂ +₁ id) ∘ f)#ᵇ ] ∘ ((π₂ +₁ id) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] ∘ f , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (⟨⟩-unique′
(begin
π₁ ∘ ⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ≈⟨ project₁ ⟩
[ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
[ π₁ ∘ id , π₁ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₁ ∘ [ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∎)
(begin
π₂ ∘ ⟨ [ id ∘ π₁ , ((π₁ +₁ id) ∘ f)#ᵃ ∘ id ] , [ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ⟩ ≈⟨ project₂ ⟩
[ id ∘ π₂ , ((π₂ +₁ id) ∘ f)#ᵇ ∘ id ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
[ π₂ ∘ id , π₂ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ id , ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → ⟨⟩-unique′
(begin
π₁ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ id) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
(id +₁ h) ∘ (π₁ +₁ id) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ id +₁ id ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ id) ∘ (id +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ id) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ id) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ id) ∘ g)#ᵃ , ((π₂ +₁ id) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ id) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin
(id +₁ h) ∘ (π₂ +₁ id) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩
((π₂ ∘ id +₁ id ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₂ +₁ id) ∘ ((id +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩
((π₂ +₁ id) ∘ g) ∘ h ∎)⟩
((π₂ +₁ id) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩
π₂ ∘ ⟨ ((π₁ +₁ id) ∘ g)#ᵃ , ((π₂ +₁ id) ∘ g)#ᵇ ⟩ ∘ h ∎)
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
+₁-id-swap : ∀ {X Y C} {f : X ⇒ (A × B) + X} {h : Y ⇒ X + Y} (π : A × B ⇒ C) → [ (id +₁ i₁) ∘ ((π +₁ id) ∘ f) , i₂ ∘ h ] ≈ (π +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ]
+₁-id-swap {X} {Y} {C} {f} {h} π = begin ([ (id +₁ i₁) ∘ ((π +₁ id) ∘ f) , i₂ ∘ h ] ) ≈⟨ ([]-congʳ sym-assoc) ⟩
([ ((id +₁ i₁) ∘ (π +₁ id)) ∘ f , i₂ ∘ h ] ) ≈⟨ []-cong₂ (∘-resp-≈ˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))) (∘-resp-≈ˡ (sym identityʳ)) ⟩
(([ (π ∘ id +₁ id ∘ i₁) ∘ f , (i₂ ∘ id) ∘ h ])) ≈˘⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂) ⟩
(([ (π +₁ id) ∘ (id +₁ i₁) ∘ f , (π +₁ id) ∘ i₂ ∘ h ])) ≈˘⟨ ∘[] ⟩
((π +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ]) ∎
foldingˡ : ∀ {X} {Y} {f} {h} → (((π₁ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ) ≈ ((π₁ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₁ identityˡ)) ⟩
((((π₁ +₁ id) ∘ f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding ⟩
([ (id +₁ i₁) ∘ ((π₁ +₁ id) ∘ f) , i₂ ∘ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-id-swap π₁)⟩
((π₁ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ ∎
foldingʳ : ∀ {X} {Y} {f} {h} → ((π₂ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈ ((π₂ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ id) ∘ (⟨ ((π₁ +₁ id) ∘ f)#ᵃ , ((π₂ +₁ id) ∘ f)#ᵇ ⟩ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₂ identityˡ)) ⟩
((((π₂ +₁ id) ∘ f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding ⟩
[ (id +₁ i₁) ∘ ((π₂ +₁ id) ∘ f) , i₂ ∘ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ (+₁-id-swap π₂) ⟩
((π₂ +₁ id) ∘ [ (id +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ ∎
Product-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra) → Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB = record
{ A×B = Product-Elgot-Algebra {EA} {EB}
; π₁ = record { h = π₁ ; preserves = λ {X} {f} → project₁ }
; π₂ = record { h = π₂ ; preserves = λ {X} {f} → project₂ }
; ⟨_,_⟩ = λ {E} f g → let
open Elgot-Algebra-Morphism f renaming (h to f′; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to g′; preserves to preservesᵍ)
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = ⟨ f′ , g′ ⟩ ; preserves = λ {X} {h} →
begin
⟨ f′ , g′ ⟩ ∘ (h #ᵉ) ≈⟨ ⟨⟩∘ ⟩
⟨ f′ ∘ (h #ᵉ) , g′ ∘ (h #ᵉ) ⟩ ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ ⟩
⟨ ((f′ +₁ id) ∘ h) #ᵃ , ((g′ +₁ id) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))) ⟩
⟨ ((π₁ ∘ ⟨ f′ , g′ ⟩ +₁ id ∘ id) ∘ h) #ᵃ , ((π₂ ∘ ⟨ f′ , g′ ⟩ +₁ id ∘ id) ∘ h) #ᵇ ⟩ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (pullˡ +₁∘+₁)) (#ᵇ-resp-≈ (pullˡ +₁∘+₁)) ⟩
⟨ ((π₁ +₁ id) ∘ (⟨ f′ , g′ ⟩ +₁ id) ∘ h) #ᵃ , ((π₂ +₁ id) ∘ (⟨ f′ , g′ ⟩ +₁ id) ∘ h) #ᵇ ⟩ ∎ }
; project₁ = project₁
; project₂ = project₂
; unique = ⟨⟩-unique
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (Product-Elgot-Algebra {EA} {EB}) using () renaming (_# to _#ᵖ)
Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras = record
{ terminal = Terminal-Elgot-Algebras
; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
}