The (Functor-)Category of Strong Pre-Elgot Monads.

module Category.Construction.StrongPreElgotMonads {o  e} (ambient : Ambient o  e) where
open Ambient ambient
open import Monad.PreElgot ambient
open import Algebra.Elgot cocartesian
open HomReasoning
open Equiv
open M C
open MR C

First we look at morphisms between strong pre-Elgot monads:

module _ (P S : StrongPreElgotMonad) where
  private
    open StrongPreElgotMonad P using () renaming (SM to SMP; elgotalgebras to P-elgots)
    open StrongPreElgotMonad S using () renaming (SM to SMS; elgotalgebras to S-elgots)
    open StrongMonad SMP using () renaming (M to TP; strengthen to strengthenP)
    open StrongMonad SMS using () renaming (M to TS; strengthen to strengthenS)
    open RMonad (Monad⇒Kleisli C TP) using () renaming (extend to extendP)
    open RMonad (Monad⇒Kleisli C TS) using () renaming (extend to extendS)
    _#P = λ {X} {A} f  P-elgots._# {X} {A} f
    _#S = λ {X} {A} f  S-elgots._# {X} {A} f
  record StrongPreElgotMonad-Morphism : Set (o    e) where
    field
      α : NaturalTransformation TP.F TS.F
    module α = NaturalTransformation α
    field
      α-η :  {X}
         α.η X  TP.η.η X  TS.η.η X
      α-μ :  {X}
         α.η X  TP.μ.η X  TS.μ.η X  TS.F.₁ (α.η X)  α.η (TP.F.₀ X)
      α-strength :  {X Y}
         α.η (X × Y)  strengthenP.η (X , Y)  strengthenS.η (X , Y)  (idC  α.η Y)
      α-preserves :  {X A} (f : X  TP.F.₀ A + X)  α.η A  f #P  ((α.η A +₁ idC)  f) #S

Now the category:

StrongPreElgotMonads : Category (o    e) (o    e) (o  e)
StrongPreElgotMonads = record
  { Obj = StrongPreElgotMonad 
  ; _⇒_ = StrongPreElgotMonad-Morphism
  ; _≈_ = λ f g  (StrongPreElgotMonad-Morphism.α f)  (StrongPreElgotMonad-Morphism.α g)
  ; id = id'
  ; _∘_ = _∘'_
  ; assoc = assoc
  ; sym-assoc = sym-assoc
  ; identityˡ = identityˡ
  ; identityʳ = identityʳ
  ; identity² = identity²
  ; equiv = record { refl = refl ; sym = λ f  sym f ; trans = λ f g  trans f g }
  ; ∘-resp-≈ = λ f≈h g≈i  ∘-resp-≈ f≈h g≈i
  }
  where
    open Elgot-Algebra-on using (#-resp-≈)
    id' :  {A : StrongPreElgotMonad}  StrongPreElgotMonad-Morphism A A
    id' {A} = record
      { α = ntHelper (record { η = λ _  idC ; commute = λ _  id-comm-sym }) 
      ; α-η = identityˡ 
      ; α-μ = sym (begin
          M.μ.η _  M.F.₁ idC  idC ≈⟨ refl⟩∘⟨ identityʳ 
          M.μ.η _  M.F.₁ idC       ≈⟨ elimʳ M.F.identity 
          M.μ.η _                   ≈⟨ sym identityˡ 
          idC  M.μ.η _             )
      ; α-strength = λ {X} {Y}  sym (begin 
        strengthen.η (X , Y)  (idC  idC)       ≈⟨ refl⟩∘⟨ (⁂-cong₂ refl (sym M.F.identity))  
        strengthen.η (X , Y)  (idC  M.F.₁ idC) ≈⟨ strengthen.commute (idC , idC)  
        M.F.₁ (idC  idC)  strengthen.η (X , Y) ≈⟨ (M.F.F-resp-≈ (⟨⟩-unique id-comm id-comm)  M.F.identity) ⟩∘⟨refl  
        idC  strengthen.η (X , Y)               ) 
      ; α-preserves = λ f  begin
          idC  f #            ≈⟨ identityˡ 
          f #                  ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) 
          ((idC +₁ idC)  f) # 
      }
      where
        open StrongPreElgotMonad A using (SM; elgotalgebras)
        open StrongMonad SM using (M; strengthen)
        _# = λ {X} {A} f  elgotalgebras._# {X} {A} f
    _∘'_ :  {X Y Z : StrongPreElgotMonad}  StrongPreElgotMonad-Morphism Y Z  StrongPreElgotMonad-Morphism X Y  StrongPreElgotMonad-Morphism X Z
    _∘'_ {X} {Y} {Z} f g = record
      { α = αf ∘ᵥ αg
      ; α-η = λ {A}  begin
        (αf.η A  αg.η A)  MX.η.η A ≈⟨ pullʳ (α-η g) 
        αf.η A  MY.η.η A            ≈⟨ α-η f 
        MZ.η.η A                     
      ; α-μ = λ {A}  begin
        (αf.η A  αg.η A)  MX.μ.η A                                                       ≈⟨ pullʳ (α-μ g) 
        αf.η A  MY.μ.η A  MY.F.₁ (αg.η A)  αg.η (MX.F.₀ A)                              ≈⟨ pullˡ (α-μ f) 
        (MZ.μ.η A  MZ.F.₁ (αf.η A)  αf.η (MY.F.₀ A))  MY.F.₁ (αg.η A)  αg.η (MX.F.₀ A) ≈⟨ assoc  refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) 
        MZ.μ.η A  MZ.F.₁ (αf.η A)  (MZ.F.₁ (αg.η A)  αf.η (MX.F.₀ A))  αg.η (MX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism MZ.F))) 
        MZ.μ.η A  (MZ.F.₁ (αf.η A  αg.η A)  αf.η (MX.F.₀ A))  αg.η (MX.F.₀ A)          ≈⟨ refl⟩∘⟨ assoc 
        MZ.μ.η A  MZ.F.₁ ((αf.η A  αg.η A))   αf.η (MX.F.₀ A)  αg.η (MX.F.₀ A)         
      ; α-strength = λ {A} {B}  begin 
        (αf.η (A × B)  αg.η (A × B))  strengthenX.η (A , B)     ≈⟨ pullʳ (α-strength g) 
        αf.η (A × B)  strengthenY.η (A , B)  (idC  αg.η B)     ≈⟨ pullˡ (α-strength f) 
        (strengthenZ.η (A , B)  (idC  αf.η B))  (idC  αg.η B) ≈⟨ pullʳ (⁂∘⁂  ⁂-cong₂ identity² refl) 
        strengthenZ.η (A , B)  (idC  (αf.η B  αg.η B))         
      ; α-preserves = λ {A} {B} h  begin
        (αf.η B  αg.η B)  (h #X)                   ≈⟨ pullʳ (α-preserves g h) 
        αf.η B  ((αg.η B +₁ idC)  h) #Y            ≈⟨ α-preserves f ((αg.η B +₁ idC)  h) 
        (((αf.η B +₁ idC)  (αg.η B +₁ idC)  h) #Z) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁  +₁-cong₂ refl identity²)) 
        (((αf.η B  αg.η B +₁ idC)  h) #Z)          
      }
      where
        open StrongPreElgotMonad X using () renaming (SM to SMX)
        open StrongPreElgotMonad Y using () renaming (SM to SMY)
        open StrongPreElgotMonad Z using () renaming (SM to SMZ)
        open StrongMonad SMX using () renaming (M to MX; strengthen to strengthenX)
        open StrongMonad SMY using () renaming (M to MY; strengthen to strengthenY)
        open StrongMonad SMZ using () renaming (M to MZ; strengthen to strengthenZ)
        _#X = λ {A} {B} f  StrongPreElgotMonad.elgotalgebras._# X {A} {B} f
        _#Y = λ {A} {B} f  StrongPreElgotMonad.elgotalgebras._# Y {A} {B} f
        _#Z = λ {A} {B} f  StrongPreElgotMonad.elgotalgebras._# Z {A} {B} f

        open StrongPreElgotMonad-Morphism using (α-η; α-μ; α-strength; α-preserves)

        open StrongPreElgotMonad-Morphism f using () renaming (α to αf)
        open StrongPreElgotMonad-Morphism g using () renaming (α to αg)