module Monad.Instance.K {o ℓ e} (ambient : Ambient o ℓ e) where open Ambient ambient open import Category.Construction.ElgotAlgebras cocartesian open import Algebra.Elgot cocartesian using (Elgot-Algebra) open import Algebra.Elgot.Free cocartesian using (FreeElgotAlgebra; elgotForgetfulF) open import Algebra.Elgot.Stable distributive using (IsStableFreeElgotAlgebra; IsStableFreeElgotAlgebraˡ; isStable⇒isStableˡ) -- open Cartesian cartesian -- open BinaryProducts products open Equiv open MR C open M C open HomReasoning
Existence of stable free Elgot algebras yields the monad K
record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where field freealgebras : ∀ X → FreeElgotAlgebra X stable : ∀ X → IsStableFreeElgotAlgebra (freealgebras X) -- helper for accessing elgot algebras algebras : ∀ (X : Obj) → Elgot-Algebra algebras X = FreeObject.FX (freealgebras X) freeF : Functor C Elgot-Algebras freeF = FO⇒Functor elgotForgetfulF freealgebras adjoint : freeF ⊣ elgotForgetfulF adjoint = FO⇒LAdj elgotForgetfulF freealgebras monadK : Monad C monadK = adjoint⇒monad adjoint module monadK = Monad monadK kleisliK : KleisliTriple C kleisliK = Monad⇒Kleisli C monadK module kleisliK = RMonad kleisliK module K = Functor monadK.F
Some helper definitions to make our life easier
open Elgot-Algebra using (#-resp-≈; #-Fixpoint; #-Compositionality; #-Uniformity; #-Folding; #-Diamond; #-Stutter) renaming (A to ⟦_⟧) public stableˡ = λ X → isStable⇒isStableˡ (freealgebras X) (stable X) η = λ Z → FreeObject.η (freealgebras Z) _♯ = λ {A X Y} f → IsStableFreeElgotAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f _♯ˡ = λ {A X Y} f → IsStableFreeElgotAlgebraˡ.[_,_]♯ˡ {Y = X} (stableˡ X) {X = A} (algebras Y) f _# = λ {A} {X} f → Elgot-Algebra._# (algebras A) {X = X} f
The kleisli star is iteration preserving:
open kleisliK using (extend) open monadK using (μ) extend-preserve : ∀ {X Y Z} (f : X ⇒ K.₀ Y) (h : Z ⇒ K.₀ X + Z) → extend f ∘ h # ≈ ((extend f +₁ idC) ∘ h) # extend-preserve {X} {Y} {Z} f h = begin (μ.η _ ∘ K.₁ f) ∘ h # ≈⟨ pullʳ (Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) (η _ ∘ f))) ⟩ μ.η _ ∘ ((K.₁ f +₁ idC) ∘ h) # ≈⟨ Elgot-Algebra-Morphism.preserves (((freealgebras _) FreeObject.*) idC) ⟩ ((μ.η _ +₁ idC) ∘ (K.₁ f +₁ idC) ∘ h) # ≈⟨ #-resp-≈ (algebras _) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩ ((extend f +₁ idC) ∘ h) # ∎
Uniqueness of the stability operator gives us the following proof principle:
by-stability : ∀ {X Y} (A : Elgot-Algebra) {f g : X × ⟦ algebras Y ⟧ ⇒ ⟦ A ⟧} (i : X × Y ⇒ ⟦ A ⟧) → i ≈ f ∘ (idC ⁂ η Y) → i ≈ g ∘ (idC ⁂ η Y) → (∀ {Z} (h : Z ⇒ ⟦ algebras Y ⟧ + Z) → f ∘ (idC ⁂ (Elgot-Algebra._# (algebras Y) h)) ≈ Elgot-Algebra._# A ((f +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) → (∀ {Z} (h : Z ⇒ ⟦ algebras Y ⟧ + Z) → g ∘ (idC ⁂ (Elgot-Algebra._# (algebras Y) h)) ≈ Elgot-Algebra._# A ((g +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ h))) → f ≈ g by-stability {X} {Y} A {f} {g} i f-law g-law f-pres g-pres = begin f ≈⟨ ♯-unique i f f-law f-pres ⟩ [ A , i ]♯ ≈⟨ sym (♯-unique i g g-law g-pres) ⟩ g ∎ where open IsStableFreeElgotAlgebra (stable Y) using ([_,_]♯; ♯-unique) by-stabilityˡ : ∀ {X Y} (A : Elgot-Algebra) {f g : ⟦ algebras Y ⟧ × X ⇒ ⟦ A ⟧} (i : Y × X ⇒ ⟦ A ⟧) → i ≈ f ∘ (η Y ⁂ idC) → i ≈ g ∘ (η Y ⁂ idC) → (∀ {Z} (h : Z ⇒ ⟦ algebras Y ⟧ + Z) → f ∘ ((Elgot-Algebra._# (algebras Y) h) ⁂ idC) ≈ Elgot-Algebra._# A ((f +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))) → (∀ {Z} (h : Z ⇒ ⟦ algebras Y ⟧ + Z) → g ∘ ((Elgot-Algebra._# (algebras Y) h) ⁂ idC) ≈ Elgot-Algebra._# A ((g +₁ idC) ∘ distributeʳ⁻¹ ∘ (h ⁂ idC))) → f ≈ g by-stabilityˡ {X} {Y} A {f} {g} i f-law g-law f-pres g-pres = begin f ≈⟨ ♯ˡ-unique i f f-law f-pres ⟩ [ A , i ]♯ˡ ≈⟨ sym (♯ˡ-unique i g g-law g-pres) ⟩ g ∎ where open IsStableFreeElgotAlgebraˡ (stableˡ Y) using ([_,_]♯ˡ; ♯ˡ-unique)